题解

1 条题解

  • 1
    @ 2024-11-23 17:10:10

    \(
    \begin{aligned}
    a_{i, j}
    & = a_{i - 1, j} + a_{i, j - 1} \cr
    & = a_{i - 1, j} + a_{i - 1, j - 1} + a_{i, j - 2} \cr
    & = a_{i - 1, j} + a_{i - 1, j - 1} + a_{i - 1, j - 2} + a_{i, j - 3} \cr
    & = \sum_{k = 1}^{j}{a_{i - 1, k}} + a_{i, 0} \cr
    & = \sum_{k = 1}^{j}{a_{i - 1, k}}
    \end{aligned}
    \)

    令 \(F_i = \begin{pmatrix}
    a_{i, 1} & a_{i, 2} & a_{i, 3} & \dots & a_{i, m}
    \end{pmatrix}\)

    且 \(A = \begin{pmatrix}
    1 & 1 & 1 & \cdots & 1 \cr
    0 & 1 & 1 & \cdots & 1 \cr
    0 & 0 & 1 & \cdots & 1 \cr
    \vdots & \vdots & \vdots & \ddots & \vdots \cr
    0 & 0 & 0 & \cdots & 1
    \end{pmatrix}\)

    那么有 \(F_i \times A = F_{i + 1}\)

    所以 \(F_n = F_1 \times A^{n - 1}\)

  • 1

信息

ID
1014
难度
(无)
分类
(无)
标签
(无)
递交数
0
已通过
0
通过率
?
上传者